Int. J. Solids Structures Vol. 34, No. 25, pp. 3291-3320, 1997
@ Pergamon © 1997 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
7 K R
PII: S0020-7683(96)00191-6 0020-TERABTIIT00 + .00

EFFECTS OF YIELD SURFACE SHAPE AND
ROUND-OFF VERTEX ON CRACK-TIP FIELDS
FOR PRESSURE-SENSITIVE MATERIALS

W. J. CHANG and J. PAN

Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor,
Michigan, U.S.A.

(Received 29 June 1995 ; in revised form 29 August 1996)

Abstract— Asymptotic crack-tip fields for both power-law hardening and perfectly-plastic pressure-
sensitive materials based on a modified Drucker—Prager yield criterion are obtained under plane
strain conditions. The Drucker-Prager yield criterion is expressed as a linear combination of the
effective stress and the mean stress. Because of the mathematical difficulty in developing the HRR-
type asymptotic crack-tip fields due to the vertex of the yield surface based on the Drucker-Prager
yield criterion, the vertex is rounded off and replaced by a curved yield surface which is based on a
quadratic function of the effective stress and the mean stress. The HRR-type asymptotic solutions
become available after rounding-off the vertex under the conditions where the asymptotic solution
procedure breaks down based on the original Drucker—Prager yield criterion. The crack-tip fields
for materials with large pressure sensitivity are sensitive to the ratio of the mean stress to the effective
stress where the yield surface becomes quadratic. Specifically, as the stress ratio decreases, ahead of
the tip the opening stress becomes larger than the radial stress, and the plastic deformation becomes
concentrated to the front of the crack tip. As the stress ratio increases, the stress state ahead of the
tip is shown to approach to purely hydrostatic tension, and the plastic deformation shifts backward
to concentrate below and above the tip. As pressure sensitivity increases and the stress ratio
decreases, the generalized effective stress contour, which can be regarded as an approximate plastic
zone contour, shifts to the front of the tip. The elongated shape of approximate plastic zones for
materials with large pressure sensitivity agrees with the experimental observations of the shear
yielding zones near cracks in rubber-modified plastics and with the computational results for
materials based on the Drucker-Prager yield criterion with large pressure sensitivity. © 1997 Elsevier
Science Ltd.

1. INTRODUCTION

In the classical plasticity theory, it is generally assumed that hydrostatic pressure has no
effect on material plastic deformation, and plastic dilatancy is neglected. However, for
many materials such as soils, concretes, rocks and silicate glasses, pressure-sensitive yielding
and plastic volumetric deformation are exhibited. Plastics also show pressure-sensitive
yielding and plastic volumetric deformation ( for example, see Whitney and Andrews, 1967
Sternstein and Ongchin, 1969 ; Rabinowtz et al., 1970 ; Drucker, 1973 ; Sauer et al., 1973;
Spitzig and Richmond, 1979 ; and Carapellucci and Yee, 1986). Pressure-sensitive yielding
is also observed in zirconia-containing transformation toughened ceramics ( for example,
see Chen and Reyes Morel, 1986 ; Reyes-Morel and Chen, 1988 ; Yu and Shetty, 1989). It
is considered that the pressure-sensitive yielding occurs from basic flow mechanism in
plastics and from phase transformation in phase transformation ceramics. Voids and other
forms of defects can also result in macroscopic pressure sensitivity, see Gurson (1975) for
porous materials with pressure-insensitive matrices and Jeong and Pan (1995) for porous
materials with pressure-sensitive matrices.

Li and Pan (1990a, 1990b) studied the pressure-sensitive yielding effects on asymptotic
crack-tip fields based on the Drucker—Prager yield criterion (Drucker and Prager, 1952)
for power-law hardening materials and perfectly plastic materials under both plane strain
and plane stress conditions. The Drucker—Prager yield criterion is expressed as a linear
combination of the mean stress and the effective stress which is related to the second
invariant of the stress deviator. Li and Pan (1990a, 1990b) found that the HRR-type
asymptotic crack-tip fields (Hutchinson, 1968a, 1968b ; Rice and Rosengren, 1968) do exist
for power-law hardening materials for a range of pressure sensitivity. Li and Pan (1990a,
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1990b) also presented the perfectly plastic crack-tip fields which agree well with the cor-
responding low hardening solutions. When the pressure sensitivity factor u increases and
approaches to a limit value for each hardening exponent, the stress state ahead of the crack
tip approaches to purely hydrostatic tension. Beyond the limit value of u they could not
find any HRR-type asymptotic solution using the Runge—Kutta method for numerical
integration and the shooting method for satisfying the boundary conditions.

Pan and Chen (1991) then used a finite element method for deformation plasticity
power-law hardening materials to investigate the asymptotic crack-tip fields under plane
strain and small-scale yielding conditions. Their results showed that for x larger than the
limit value for each hardening exponent, the HRR-type crack-tip field does exist and the
stress state ahead of the tip stays in purely hydrostatic tension for a range of 4. When pu
becomes larger than a value near \ﬁ /2, the HRR-type crack-tip field breaks down and the
near-tip field becomes oscillatory. Dong and Pan (1991) investigated the crack-tip fields by
finite element methods for elastic—plastic pressure-sensitive dilatant materials under plane
strain and small-scale yielding conditions. Their results also indicated that the HRR-type
asymptotic crack-tip fields exist beyond the limit value of the pressure sensitivity factor for
each hardening exponent for power-law hardening materials, and that elastic sectors of
finite stresses exist and border the crack faces for elastic perfectly plastic materials, in
contrast to the fully yielded solutions based on the slip-line theory proposed by Li and Pan
(1990a). Their perfectly plastic finite element solutions also indicated that when p is larger
than \ﬁ/Z, no asymptotic solutions can be found. Due to the discretization of the finite
element method, the computational results obtained by Pan and Chen (1991) and Dong
and Pan (1991) can be regarded as the results based on the Drucker—Prager yield criterion
with a round-off vertex. The curvature of the round-off vertex is related to the size of the
finite elements directly ahead of the tip.

The yield criteria for plastics and phase transformation ceramics appear to be linear
in terms of the effective stress and the mean stress, from the stress state with very large
negative mean stress to the uniaxial tensile stress state according to the experimental
evidences (Drucker, 1973; Chen and Reyes Morel, 1986; Reyes-Morel and Chen, 1988).
However, the Drucker—Prager yield criterion at large mean stress near the state of purely
hydrostatic tension has not been validated due to experimental difficulties. From the
material viewpoint, we expect that large tensile stresses tend to enlarge the existing defects
such as voids or microcracks in materials and yielding should occur earlier than that
predicted by the Drucker—Prager yield criterion. Also invoking the convexity of the yield
surface should result in the same conclusion. Of course, a yield criterion for voided materials
proposed by Gurson (1975) can shed some light on the material yielding behavior at large
hydrostatic tension. In fact, Gurson’s yield criterion and its modified form (Tvergaard,
1980, 1981) have been used extensively to study the stress and deformation field near
crack tips in ductile materials, see Aoki et al. (1984), Aravas and McMeeking (1985) and
Needleman and Tvergaard (1987).

A recent investigation of the deformation fields near crack tips in rubber-modified
plastics by Pearson and Yee (1991) indicated that the intense plastic straining appears to
be concentrated ahead of the tip. Also, Yu and Shetty (1989) showed that the phase
transformation zones near cracks in zirconia ceramics appear to be concentrated ahead of
the tip. A finite element analysis by Jeong and Pan (1996) based on a generalized Gurson’s
yield criterion (Jeong and Pan, 1995) for porous materials with pressure-sensitive matrices
showed an elongated intense straining zone ahead of the crack tip, which is in good
agreement with the experimental observation of Pearson and Yee (1991). The finite element
analyses of Pan and Chen (1991), Dong and Pan (1991) and Kim and Pan (1994) indicated
that plastic deformation does become concentrated ahead of the tip for materials based on
the Drucker—Prager yield criterion with large pressure sensitivity. A common feature of the
deformation patterns near cracks in plastics and phase transformation ceramics is elongated
intense straining zone and phase transformation zone ahead of the tips. The main reason
for causing the common deformation pattern can be rationalized as the large pressure
sensitivity of yielding for materials near the crack tips. For phase transformation ceramics,
the large pressure sensitivity comes from the intrinsic nature of phase transformation. For
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toughened plastics, the large pressure sensitivity comes from the extensive cavitation near
the tips. In order to seek a relatively simple analysis to substantiate this rationalization,
HRR-type asymptotic analyses of crack-tip fields have been carried out (Li and Pan, 1990a,
1990b). However, due to the mathematical difficulty associated with the vertex of the
Drucker-Prager’s yield surface for materials with large pressure sensitivity, no simple
theoretical verification of the computational results for phase transformation ceramics and
toughened plastics has been obtained. Therefore, we here modify the Drucker-Prager yield
criterion and intend to understand the crack-tip fields for materials with large pressure
sensitivity.

Specifically, when the ratio of the mean stress to the effective stress becomes large, to
avoid the existence of the vertex on the yield surface based on the Drucker—Prager yield
criterion, we approximate the yield criterion based on a quadratic function of the mean
stress and the effective stress following the arguments of the existence of defects and the
convexity of the yield surface. In this way we can study the effects of the yield surface shape
on the asymptotic crack-tip fields under plane strain conditions based on this modified
Drucker-Prager yield criterion. According to the asymptotic crack-tip solutions for low
hardening materials, we are then able to assemble perfectly-plastic asymptotic solutions
based on the modified Drucker-Prager yield criterion as well as a parabolic type of yield
criterion. The implications of the geometric shape of the yield surface to the crack-tip fields
are presented and discussed.

2, CONSTITUTIVE RELATIONS

Based on the experimental results of polymers and phase transformation ceramics, the
yielding of these materials follows the Drucker-Prager yield criterion from the stress state
with very large negative mean stress to the uniaxial tensile stress state. The Drucker—Prager
yield criterion can be written as a linear combination of the mean stress o, (=04/3) and
the effective tensile stress o, (= (3s;s,/2)"* where s; = 0,—0,,6,) :

‘p(o-ij) = ae+\/§#am = Jge' (1)

In eqn (1), x4 is a material constant and represents the pressure sensitivity of yielding, ¢,
represents the generalized effective tensile stress, and ¥ (o,,) represents the yield surface in
the stress space. For steels, the values of u are quite small in the range from 0.014 to 0.064
(Spitzig et al., 1975, 1976). For polymers, the values of u are in the range from 0.1 to 0.25
(Kinloch and Young, 1983). For phase transformation ceramics, Chen {1991) reported
that p 1s 0.55 for Mg-PSZ and 0.77 for Ce-TZP. For Ce-TZP, u can be as high as 0.93 (Yu
and Shetty, 1989). The yield criterion can be plotted as a straight line inclined to the o, axis
in the o,~0c, plane as shown in Fig. 1. The value of the slope of the straight line is \/gu
as shown. When u becomes zero, the yield contour becomes a straight line parallel to the
ag,, axis and the Mises yield criterion is recovered.

To specify the initial yield surface, we set a,, = o,. Then g, and u can be determined
from uniaxial tensile and compressive tests as

: (2)

where g, is the initial compressive yield stress and ¢, is the initial tensile yield stress. The
yield surface of the Drucker-Prager yield criterion in the principal stress space has the
shape of a cone and exhibits a vertex at the cone tip. The vertex on the yield surface results
in a singularity in the constitutive law when the associated flow rule is employed. In order
to avoid the singularity in the constitutive relation based on the Drucker—Prager yield
criterion, and motivated by the geometric shape of the yield surface for steels (Gurson,
1975, 1977) and plastics with voids (Jeong and Pan, 1995), we modify the linear yield
contour near the ¢,, axis by a quadratic yield contour as shown in Fig. 1. The quadratic
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J v (y=3 for uniaxial tension)

’ Modified Drucker-Prager
yield criterion

Original Drucker-Prager
yield criterion

Fig. 1. The Drucker—Prager yield criterion and a modified Drucker—Prager yield criterion illustrated
in the 0,0, plane.

yield contour and the linear yield contour defined by eqn (1) are demarcated by a specific
ratio ¢,/0,,. It should be noted that the inclusion of a quadratic portion of the yield surface
to replace the vertex 1s to facilitate the finding of the HRR-type crack-tip fields and to
understand qualitatively the effects of the round-off vertex on the crack-tip stress and strain
fields.

We denote this ratio ¢,/0,, as y. Then we can express our modified Drucker—Prager
yield criterion as

ll,(aij) = ae+\ﬁ“a—m = aye for Gm/ae < 1/'}) (3)
Y(o;) = (Aol + Bay)'? =g, for a,lo. > 1fy )
where
y+./3
A= ’——;&-‘ and B = /3u(y+/3p). )

The constants 4 and B are determined from the continuity conditions of the yield contours
and their outward normals at ¢,/5,, = y. As p approaches 0, the Mises yield criterion is
recovered from our modified Drucker—Prager yield criterion for any ratio 7.

It should be noted that eqn (3) appears to be linear and eqn (4) quadratic in terms of
0. and a,,. Although g, is related to a quadratic function of ¢,;, we call eqn (3) linear and
eqn (4) quadratic for simplicity. Also, 6./g,, = 3 represents uniaxial tensile loading. When
we take y = 3, the material will follow the Drucker—Prager yield criterion from all com-
pressive loading conditions to uniaxial tensile loading condition. If a very small number is
assigned to v, the yield criterion will be almost the same as the original Drucker—Prager
yield criterion except a very small quadratic region close to the state of purely hydrostatic
tension. Furthermore, the outward normal to the modified Drucker—Prager yield criterion
at g, = 0 is parallel to the o,, axis due to the addition of the quadratic region. When the
normality rule is employed, a purely dilatational plastic strain rate corresponds to a purely
hydrostatic tension. This satisfies the symmetry condition for isotropic materials.

Based on the modified Drucker-Prager yield criterion in eqns (3) and (4), the curvature
of a constant g, contour in the ¢,~0, plane is 0 in the linear region but varies in the
quadratic region. Note that the quadratic yield function in eqn (4) represents an ellipse in
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the o,,—0, plane with the major axis in the o, direction when 4 > B and with the major axis
in the g, direction when 4 < B. The curvature of an elliptical contour increases mon-
otonically from the intersection with the minor axis to the intersection with the major axis.
Therefore the curvature of the quadratic contour increases monotonicaily from o./0,, =
to o,/0,, = 0 when 4 > B, and decreases monotonically from o,/g,, = y to ¢,/6,, = 0 when
A < B. When 4 isequal to B, the quadratic yield contour becomes circular and the curvature
remains constant in the quadratic region. The curvature x of the quadratic yield contour
at the border of the linear and the quadratic regions, where o,/g,, = 7, can be represented
as

o \dlagdail 1 3uG+/30)?
(1+do.fdo,))*?  Gee y(143u%)"

©

where all the derivatives in eqn (6) are calculated based on the quadratic yield function in
eqn (4) with ¢, = constant. It should be noted that the curvature « of the quadratic yield
contour at ¢,/0,, = v is finite when y # 0. Therefore, when the yield contour changes from
linear to quadratic at ¢,/0,, = y, the curvature has a jump from 0 to a finite value. The
normalized curvatures ko, of the quadratic yield contour at o,/0,, = y as functions of y are
shown in Fig. 2 for several values of u. For a given u, xo,, decreases and then increases
rapidly as y decreases. Therefore a local minimum of xa,, occurs. According to eqn (6), the
local minimum occurs aty = \/g,u. According to eqn (6), as y decreases to 0, ke, approaches
to infinity and the original Drucker—Prager yield criterion is recovered with an infinite
curvature at g, = 0.

The deformation plasticity constitutive relations for power-law hardening materials
based on the Drucker-Prager yield criterion has been elaborated in Li and Pan (1990a).
The use of deformation plasticity for asymptotic analyses of crack-tip fields for incremental
plasticity materials was discussed in Hutchinson (1968a). We follow the procedure of Li

Fig. 2. The normalized curvature of the quadratic yield contour at the border of the linear region
and quadratic region jumps from 0 on the linear side to the value shown in the figure on the
quadratic side as a function of y for u = 0.2, 0.4, 0.6, and 0.8.
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and Pan (1990a) to develop the constitutive relations based on the quadratic part of the
yield criterion. We assume a power-law stress—strain relation

Ge _ o (%o}
80_a<00>’ (7)

where g, is the reference strain, o, is the reference stress, « is a material constant, »n is the
hardening exponent, and ¢, is the generalized effective plastic strain. Here the differential
of &7, is defined as the work conjugate of o,,. When the normality flow rule is assumed, the
deformation plasticity constitutive relations for the stresses and plastic strains in the linear
and quadratic regions can be described as

& Oge \' {38, J7)
=gl ZE) [+ 5., <
. a (0'0) (20} + \/55” for o,/0.<1fy 8)
& Oge "l /3 s; 1 o,
e —A—++-B-7§, 1
. a(a(,) (2 s T35, 6;) for o,/o, > 1}y, C)]

where 4 and B are functions of x and y as described in eqn (5).

Note that when u = 0, the J, deformation plasticity is recovered from both egns (8)
and (9). One can easily examine that the constitutive relations in eqns (8) and (9) are
equivalent when o,/g,, = y so that there will be no conflict on the constitutive behavior
when the material undergoes the transition from the linear region to the quadratic region
and vice versa. The generalized effective plastic strains &), has the form of

g, = %e{;eg)”z for @,/ <1/y (10)
2 1 12
eb, = (Qe{.’je{;+ Ee{}ei}) for o,/0, > 1/y, an

where ¢4, ( = &f;,—&%,/3) are the deviatoric plastic strains.

When the elastic strains are negligible compared to the plastic strains and the plane
strain condition &;; = 0 is assumed, we can derive the constitutive equations in terms of the
in-plane stresses (0,0, and o},} and in-plane strains (g;,, &,; and &;;). In the linear region
where ¢,,/6, < 1/y, we have (Li and Pan, 1990a)

where

2\ 1/2 3 1/2 3
O-gez(l_u_> [2(011—0'22)24'30'%2] +#(0’11+0’22) (12)
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and

W\ T3 12
g, = (1—?> [2(0'11—0'22)2"‘30%2] . (13)

The other stress components of interest in the linear region are the out-of-plane stress o4,
and the mean stress 6,,. They can be represented as

__0'11+0'22 U

oy =T T72 _ E g (14)
2 \/—j
G11+022 H
O = — .. (15)
2 3./3

In the quadratic region where 6,,/0, > 1/7, we have

TN [94+aB 94—2RB
e 20 \a, ] oo )7 | 184428 T 184 +2B°2
e _3 (0,71 [ [94+4B _94-2B
g 2 \oy o 184+2B ** 184+2B "
iz _3 (o, V7' 1
& _ZM(O'O) Oy {Ao1}
where
3 [94+4B 3 [94—2B 172
Uge=[ZA(m)(afﬁ-diz)*i/i(m)011022+3/16fz} . (16)

The other stress components of interest in the quadratic region are

o, = [0, (6}, +032) —0,6,,0,, +301,]"? (17)
94-2B
O13 =m(011+622) (13)
94
— il 19
Om 18A+2B(0'11+0'22) (19)
where
814> +184B+4B8°
2 =3 A HI8ABY (20)
4 94+ B)?
and
2 _Ap2
B ~ESIA +184B—2B ' @1

o, =
? 2 (94+B)?
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Fig. 3. The coordinate convention of a planar crack problem.

3. DOMINANT SINGULARITY ANALYSIS

We consider a planar crack problem as illustrated in Fig. 3, where the Cartesian
coordinates (x,, x,) and the associated polar coordinates (r, §) are centered at the crack tip
and the x; axis lies perpendicular to the x,-x, plane. The dominant asymptotic crack-tip
fields have been obtained for power-law hardening Mises materials by Hutchinson (1968a,
1968b) and Rice and Rosengren (1968). For power-law hardening Drucker—Prager
materials, the asymptotic crack-tip fields for a limited range of u have been obtained by Li
and Pan (1990a, b). In the same way, the dominant asymptotic crack-tip stress, strain and
displacement fields for pressure-sensitive materials based on the modified Drucker—Prager
yield criterion can be written as

J I/n+1
g; = 0y [“—] &ij(g TR

ado & l(n, Wr
J njn+ 1 -
e P oo I
J njn+ 1
o | ] 0 =

where J is the J-integral given by Rice (1968) :

u;
J= Wv, —a,;v,— [ds. 23
J; |: 1 if jaxl] ( )

In eqn (23), T represents an arbitrary contour from the lower crack face to the upper crack
face in a counterclockwise sense, W represents the strain energy density function of the
deformation plasticity materials, and v, is the jth component of the outward normal unit
vector v to I'. Here, J represents the singularity amplitude of the crack-tip field. The
dimensionless constant I can be represented as

™ no_, . e v a e cosf _
I= f . [:n+ 1 Gg:—l COSG_ [Sln G(Grr(ug_ur)—O.ra(ur+u9))+ n+1 (Grrur+ar9u9)}jld9

(24)

and &, &, and &, are the dimensionless stress, strain, and displacement functions.
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We follow the solution procedure used by Hutchinson (1968a, 1968b) and Shih (1973)
to obtain the asymptotic crack-tip fields based on the modified Drucker-Prager yield
criterion. The procedure is briefly discussed in the following. An Airy stress function of
separable form in r and 6 is introduced to satisfy the equilibrium equations

b =Kr¢(@;n, u7), (25)

where 5 =(2n+1)/(n+1) is the eigenvalue obtained by the argument of the path inde-
pendence of the J-integral (Rice and Rosengren, 1968). The strain components are expressed
in terms of the stress function through the plastic stress—strain relations, and then are
inserted into the compatibility equation to arrive at a fourth-order non-linear ordinary
differential equation with 6 as the independent variable. The traction-free conditions on
the crack faces provide the necessary boundary conditions for the differential equation. A
shooting method based on a combined fourth-fifth order Runge-Kutta scheme with error
and step-size control is employed to generate solutions.

For mode I loading, the range of # for integration is set from 0° to 180° by taking
advantage of the symmetry conditions at 0°. In this angular span, there may be two different
types of sectors bordering each other: one is based on the linear part of the yield criterion
and the other is based on the quadratic part of the yield criterion. Along the border of these
two types of sectors, u,, uy, 0,5, and o, must be continuous and consequently #,, &, &,, and
&4¢ must be continuous. We can express these normalized functions as

60(0) = (1= 5§ (26)
Gar(0) = 5(s— )G @7
7,(0) = (n+1)E, (28)

1
a0 = — ey~ ), (29)

where () = 0/00. In eqns (28) and (29), §,, and &, can be expressed as

s—z

S (N (30)

&0 = Ea(d. &\ ). 31)

From eqns (26), (27), (28), and (30), it is clear that ¢, ¢, and ¢ have to be continuous
along the border. Equations (28), (29), (30), and (31) determine the jump of ¢ across the
border in order to have a continuous @,. Note that the continuity conditions of & &9, G g, and
i, (see eqns (26), (27), and (28) with (30)) also imply the continuity of &,(¢, @, 7).
Thus the asymptotic solutions for power-law hardening materials shown later reveal no
discontinuity of &,, across the border between a linear and a quadratic sector.

The crack tip opening displacement &, is defined as the opening displacement between
the intercepts of the two 45° lines drawn back from the crack tip with the deformed crack
profile (Shih, 1981). The relation between J and J, has been investigated for Mises materials
by Shih (1981). In the same way, we express the crack tip opening displacement §, as

1/n 2
8, = (at, )l/n( )W (32)
O I
where i, = — (0 = n) and i, = —d,(8 = n). The length scale of §, in terms of J/o, gives

the approximate size where the effects of finite deformation should be taken into account
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Table 1. The numerical values of y,,(n, u) for the modified Drucker—Prager yield criterion (“— indicates that the
hardening solution is not available by the shooting method for the original Drucker—Prager yield criterion)

P 0 0.1 0.2 0.3 0.4 0.6 0.8 V32
n=3 0.1427 - — — — — — -
n=10 0.3170 02250  0.1362 0.0461 - - — —
n=25 0.3708 0.2878 0.2102 0.1371 0.0674 — — -
n =730 0.3913 0.3116 02376  0.1686 0.1042 - - —
n= oo 0.4182 0.3434 0.2747 02116 0.1537 0.0556  0.0013 0

(McMeeking, 1977). We can rewrite eqn (32) as
J
8, = (2e0) " (-) (33)
)

where

_ (#, ‘*‘ﬂz)”n - 24,

p 1

34

The normalized coordinates, x; and x,, by d, for the deformed crack tip profile can be
expressed as

i _ (L)+ (L) i, o5
o o)\ (G, +a,)' " - 2,

X (,.)1,%4—1 ﬁz (36)
o \&/) @+ 2]

4. CRACK-TIP FIELDS FOR POWER-LAW HARDENING MATERIALS

=

Mode I crack-tip fields under plane strain conditions are investigated in this paper.
Our numerical results show that the HRR-type crack-tip fields based on the modified
Drucker-Prager yield criterion can be obtained for u < \/3/2 (~0.866). The asymptotic
crack-tip solutions are very sensitive to the exact geometric shape of the yield criterion in
terms of the value of y. Various values of y have been selected to examine the effects of the
quadratic part of the yield criterion on the crack-tip fields and to extrapolate to the crack-
tip ficlds based on the original Drucker—Prager yield criterion with a vertex on the yield
surface.

In general, for a given set of n and u there exists a critical value of y below which the
crack-tip solutions remain the same as those given by Li and Pan (1990a). These solutions
from 0 = 0° to 180° are completely based on the linear part of the yield criterion. This
critical value of y, denoted by y,,, is essentially the minimum value of ¢,/0,, of the solutions
given by Li and Pan (1990a) for the given n and u. In other words, if we select a modified
Drucker-Prager yield criterion with y less than y,,, then the development of the solution
will not depend upon the quadratic part of the yield criterion. The values of y,, for various
ws and n’s are listed in Table 1. Note that the symbol “—" in Table 1 indicates that the
solution is not available by the shooting method based on the original Drucker—Prager
yield criterion. In general the values of y,, are quite small for both power-law hardening
and perfectly plastic materials (» = o0). Note that the 1/y,, represents the ratio g,,,/g, ahead
of the tip for materials based on the original Drucker—Prager yield criterion. For =0,
1/y., decreases as the hardening exponent n increases. This indicates that the triaxality
ahead of the crack tip actually decreases as n increases for Mises materials. For high
hardening materials (» = 3), a quadratic part of the yield criterion must be introduced for
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the existence of the HRR-type solutions for materials with moderately large p, as shown
by these “—" symbols in Table 1. As n increases, the requirement for incorporation of a
quadratic part of the yield criterion for the existence of the HRR-type solutions actually
relaxes.

For perfectly plastic materials, asymptotic solutions can always be found as long as
U< ﬁ/Z, and the values of y,, decrease as u increases. For perfectly plastic materials,
when u becomes large, y., becomes very small. This implies that for perfectly plastic
materials, as long as there is a curved part of the yield surface near the vertex, the curved
part of the yield surface can definitely affect the asymptotic solutions. This also indicates
that for low hardening and perfectly plastic materials with large pressure sensitivity the
exact shape of the yield surface at large hydrostatic tension, which is difficult to obtain
experimentally, is a vital information to understand the stress and deformation fields ahead
of the tip. When the HRR-type solutions for hardening materials are available at the value
of y larger than 7,, an angular span based on the quadratic part of the yield criterion
appears in front of the crack tip to cast the influence of the quadratic part of the yield
surface on the crack-tip fields.

Figure 4 shows the normalized stress, strain and displacement fields as functions of 8
for power-law hardening materials based on the modified Drucker-Prager yield criterion
with n = 10, y = 3, and = 0, 0.4, and 0.8. As mentioned earlier, y = 3 indicates that the
uniaxial tensile state is used to demarcate the linear and quadratic parts of the yield
criterion. The results show the effects of the curved yvield surface on the crack-tip stress and
deformation fields. In these figures, we mark “Linear Region” for regions based on the
linear part of the yield criterion and “Quadratic Region” for regions based on the quadratic
part of the yield criterion. For 4 = 0, we mark “Quadratic/Linear’ because the Mises yield
criterion is recovered for both the linear part and quadratic part of the yield criterion, as
discussed earlier.

As shown in Fig. 4(a), the stress and strain solutions for Mises materials are recovered
for 4 = 0. Also shown in Fig. 4(a), the opening stress &;, ahead of the crack tip becomes
significantly larger than the other components as p increases. For g =04 and 0.8, a
quadratic region appears ahead of the tip and a rapid variation on &,, can be seen near
0 = 180°. The quadratic region is bordered at the angle where the discontinuity of the slope
of &, occurs. As n increases, the angular span of the quadratic region decreases. The
discontinuity of the slope of &, becomes more substantial when » and/or x becomes large.
Figure 4(b) shows that as y increases, the plastic deformation shifts to the front of the tip.
Figure 4(c) shows the normalized displacement fields as functions of €. It should be noted
that the displacements are continuous at the borders between the linear and quadratic
regions. It should also be noted that the radial displacements at # = 180° for u = 0.4 and
0.8 are negative. This implies a concave deformed crack-tip profile in contrast to that of
u = 0. The opening profiles of the crack faces will be presented in Fig. 6 and will be
discussed later. It should be noted here that there are no HRR-type solutions available for
power-law hardening materials based on the original Drucker—Prager yield criterion with
n=10and x4 = 0.4 and 0.8.

Figure 5 shows the generalized effective stress contours in the normalized coordinates
for various y’s, #»’s and y’s. These contours can be regarded as approximate plastic zones
under small-scale yielding conditions. Figures 5(a) and 5(b) show that the approximate
plastic zone shifts toward the front of the tip and stretches in the crack-line direction for
large p as n increases. Figures 5(b) and 5(c) show that the contour shifts backward for large
u as y decreases. The elongated phase transformation zones in the crack-line direction on
the surfaces of three-point bend specimens of zirconia ceramics was observed by Yu and
Shetty (1989). We can not directly compare our approximate plastic zone under plane
strain conditions with the experimental observation on the surface of specimen under plane
stress conditions. The elongated phase transformation zone has been simulated successfully
by finite element computations in Ben-Aoun and Pan (1996) based on the original Drucker—
Prager yield criterion and by considering the constraint conditions in terms of the 7 stress.
The general trend of our approximate plastic zones for materials with large pressure
sensitivity agrees with that of the computational results of shear yielding zones in rubber-
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modified epoxies presented in Jeong and Pan (1996). Also, the general trend of our approxi-
mate plastic zones for low hardening materials with large pressure sensitivity and small y’s
agrees well with the computational results based on the original Drucker—Prager yield
criterion for perfectly plastic materials in Kim and Pan (1994) and for strong phase
transformation materials in Kim and Pan (1993). The implications of the near-tip fields on
fracture of phase transformation ceramics with large u are discussed in Kim and Pan (1993,
1994).

Figure 6 shows the normalized crack opening profiles for y = 3 and n = 3, 10, and 50.
The length scale used for normalizing the opening shape is the crack opening displacement
d, as defined earlier. Figure 6 shows that the crack opening profile is convex for g = 0 and
concave for u = 0.4 and 0.8. The concavity of the crack opening profile decreases as u
changes from 0.4 to 0.8. The concavity of the crack opening profile can be explained by
positive #; and i, (or negative 4, and &, at § = n). Consider the cases where both #, and @,
are positive. From eqns (35) and (36), both x,/6, and x,/3, are positive at very small r/d,.
Therefore, the crack opening profile extends in the first quadrant as r/d, increases from 0.
When r/d, becomes much larger than 1, x,/6, becomes negative. However, x,/§, remains
positive. This means the crack opening profile should be in the second quadrant at large
r/d,. Therefore, the crack opening profile is concave for positive &, and #,. As shown in Fig.
6, when »n increases, the crack opening profile becomes sharper. The concave shape of the
crack opening profile suggests that new stress concentration could be generated and,
consequently, crack branching may be favorable. The dimensionless constant 7 in eqn (24)
and §in eqn (33) are listed in Table 2 for y = 3 with different »’s and pu’s. In general, as u
increases, / decreases and f increases. As n increases, both 7 and f§ decrease.

Crack-tip fields for various values of » have been obtained to understand the effects of
y on the crack-tip fields. Only a few representative crack-tip fields will be shown here. The
crack-tip stress and strain fields for » = 10 and y = 0.1 are shown in Figs 7(a) and 7(b),
respectively, for comparison with those in Fig. 4 for n = 10 and y = 3. For the u = 0 case,
the stress and strain solutions are the same as those of 4 = 0 as shown in Fig. 4 and are not
shown here. An examination of the solutions shown in Fig. 7(a) and other solutions for
different combinations of », u and y indicates two types of solution structures for the crack-
tip fields. The first one is similar to those found by Li and Pan (1990a) and is in general for
small y, small 4, and/or large n. This Prandtl-type crack-tip field has no rapid variation of
o, near # = 180° and g,, is positive at § = 180°. The other type is similar to the plane-stress
type illustrated in Fig. 4(a) for 4 = 0.4 and 0.8. This type has a rapid variation of a,, near
6 = 180°, and o,, is negative at § = 180°. For convenience, we refer the former one (the
Prandtl type) as type A and the latter one (the plane-stress type) as type B. The conditions
in terms of n, x, and y for either type A or type B solution can somehow be realized by
referring to Table 1. Type 4 solutions exist under y < y.,(n, 1) and can extend to some
range of y above y.,(n, u). When the solution is a type 4 and v is larger than vy,,, we get a
combination of the linear and quadratic regions. The quadratic region appears right ahead
of the crack tip. For example, a type 4 solution for » = 10, p = 0.4 and y = 0.1 with a
quadratic region ahead of the crack tip is shown in Fig. 7(a). When we decrease y to zero
and keep n and pu constant, the yield criterion approaches to the original Drucker—Prager
yield criterion. For the given »n and p, when we do not have any available HRR-type
solution based on the original Drucker—Prager yield criterion, the solution is very likely to
stay as a type B solution when we decrease y to a very small value. We have also observed
that when the solution becomes a type 4 as we reduce y close to 0, the stress state ahead of
the crack tip becomes closer to purely hydrostatic.

A comparison of Figs 7(b) and 4(b) shows the tendency of plastic deformation shifting
backward when the value of y decreases. This is especially obvious for the case of x4 = 0.4.
The plastic deformation concentrates near 90° for ¢ = 0.4 and y = 0.1 shown in Fig. 7(b);
whereas the plastic deformation concentrates right in front of the crack tip for 4 = 0.4 and
y = 3 shown in Fig. 4(b). The effects of y on the strain field is less substantial for large u as
shown in Figs 7(b) and 4(b) for u = 0.8. For u = 0.8, the large pressure sensitivity is already
strong enough to shift the plastic deformation to the front of the crack tip even without a
quadratic part of the yield criterion.
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Table 2. The numerical values of 8(n, &) and I(n, ) fory =3
n=3 n=10 n =50
P 1 8 I 8 i p
0 5.5073 1.3263 4,5400 0.9314 3.9512 0.8176
0.2 3.9045 2.1353 3.0370 1.4471 2.6758 1.1975
0.4 3.2857 2.6417 2.3469 1.7636 2.0147 1.4539
0.8 2.2956 2.7310 1.3012 1.9341 1.0059 1.6800
(a)
w
7]
[
 —-—
L d
w
|
! Linear Region
!
-1.0 —— v T ™ T T T T -
0 30 80 90 120 150 180
Angle 6
1.
1.
v 0.
(72}
<))
p =
n
0. = ~
! . ~ N / )
1 ~Quadratic /\ —_ <.
Region = T
-0. 5 —
| G33
1 | Linear Region
-1.0 L T T T T T T T T T
0 30 60 90 120 150 180
Angle 6

Fig. 7. (a) The normalized crack-tip stresses as functions of 8 for n = 10, y = 0.1, and ¢ = 0.4 and
0.8 ; (b) the normalized crack-tip strains as functions of 8 for n = 10, y = 0.1, and x = 0.4 and 0.8.
(Continued opposite.)



Crack-tip fields 3309
(b)

159 n=10 u=0.4 v=0.1
; : Quadratic
. Region
1.0 — —
l € Exk
< * | S
s |
75 !

-0.5 T T T T — T — | B T T
0 30 60 90 120 150 180
Angle 6
159 n=10 u=0.8 v=0.1
|

=1 \\\~
— \\\&
1.0 899\\,_“(

|
I
|
1
f
|
|
J

=
?‘; 0.5 -
w I
4 /l
?
A
r S ~a
0.0 = S P ——
/— Quadratic Region
! Linear Region
-0.5 L T T T T T T \ T T
0 30 60 80 120 150 180

Angle 6

Fig. 7—Continued.

In summary, as the ratio y approaches to 0, the modified Drucker-Prager yield criterion
approaches to the original Drucker-Prager yield criterion. Under this condition, the stress
state ahead of the tip for power-law hardening materials approaches to purely hydrostatic
tension for p larger than py, of Li and Pan (1990a) for a given hardening exponent n. We
have tried to obtain the asymptotic solution based on the original Drucker-Prager materials
for u > u,, with the assumption of a state of purely hydrostatic tension at 8 = 0°. Since
the governing equation of the Airy stress function @ in eqn (25) for purely hydrostatic
tension is singular, we perturbed @, ¢, ¢~ and ¢~ from the state of purely hydrostatic
tension at 8 = 0° to a small angle @ by Taylor’s expansion to the first order as the boundary
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conditions for numerical integration. The numerical integration and shooting for these
calculations are quite unstable. However, the available results of the crack-tip fields agree
with the finite element solutions of Pan and Chen (1991).

We also note that o,, near 8 = 180° is negative and its magnitude becomes large as u
becomes close to \/5/2 for type B solutions. The solution for u = \/5/2 seems not to be
accessible for any » and vy except for those solutions by Dong and Pan (1991) for perfectly-
plastic materials based on the original Drucker—Prager yield criterion (y = 0). This can be
explained as follows. The boundary conditions at 6 = 180° require either a plane-strain
uniaxial tensile or compressive state. However, the material will not be able to yield under
this particular loading condition. In other words, the stress free boundary conditions at
6 = 180" require

G =04 =0.

When the material at 8§ = 180° follows the linear part of the yield criterion, the generalized
effective stress a,,., according to equation (12), can be represented as

25\ 172
Gpe = 4 {u+sign(<frr) <1— “—) }a,, (37

3

where sign(d,,) = 1 when o, >0 and sign(s,,) = —1 when ¢,, < 0. As y approaches
\/5/2, the generalized effective stress g, becomes zero if we assume that o, < 0 at 6 = 180°.
In our formulation, when ¢, < 0, no plastic flow should occur. This implies that elasticity
should play an important role when u approaches to \/5/2 or possibly when u is larger
than \/5/2. Indeed, the finite element computations of Pan and Chen (1991) indicate that
for power-law hardening materials, as u becomes larger than \/3/2, g, becomes negative
and only elastic deformation can occur near 8 = 180°. Of course, if the stress state is tensile
at 8 = 180°, the former argument is not true.

5. CRACK-TIP FIELDS FOR PERFECTLY PLASTIC MATERIALS

The development of crack-tip fields for perfectly-plastic materials based on the modified
Drucker-Prager yield criterion follows the work of Rice (1982). The asymptotic equilibrium
equations given by Rice (1982) are

do,
899 +O-rr—o-99 = 0 (38)
0049
20,4 = 0. 39
ae =+ G0 0 ( )

The yield function for perfectly plastic materials can be expressed as

Y(ay) = 04 (40)

where o, is a constant. Rice (1982) defined a singular plastic sector where in-plane strain
components develop singularity at the tip as » — 0. The in-plane strain singularity leads to

Pi;=0 (41)
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where P;; = dy/00,,. The governing equation derived from the yield criterion and equi-
librium equations for singular plastic sectors is

d(°'11+022)P _

P, =0 “2)

where P,, = 0y/dc,,. From eqn (42), the solution can be classified into two types:

(1) Constant stress sectors (these sectors are governed by d(o,, +0,,)/d6 = 0 which leads
to o, = constant, ¢, = constant, ¢,, = constant, and ¢, = constant. Also, ¢,,, 6,,, 1,
and o5, satisfy eqns (40) and (41)).

(2) Centered fan sectors (these sectors are governed by P,, = 0. Also, eqns (38), (39) and
(41) have to be satisfied).

Our yield criterion consists of a linear part and a quadratic part. Therefore we can
have four types of singular plastic sectors: quadratic constant stress sector (QCS), quadratic
centered fan sector (QCF), linear constant stress sector {LCS), and linear centered fan
sector (LCF).

For perfectly plastic materials the assemblies of crack-tip fields are generally non-
unique. Our assembled perfectly plastic solutions correspond to the perfectly plastic limits
of power-law hardening solutions. These solutions represent rigid perfectly plastic solutions.
It should be noted that elastic sectors may appear near the tip for elastic perfectly plastic
materials, see Kim and Pan (1994). From the low-hardening solutions, we can identify the
possible appearance of constant stress sectors, and decide the relative placement of these
singular plastic sectors. For p = 0, starting from 6 = 0° to 180° there is a constant stress
sector, a centered fan sector, and then another constant stress sector bordering the crack
surface. This is a type A crack-tip field as discussed earlier for power-law hardening
materials. The crack-tip field for g = 0 is exactly the same as the Prandtl field. As u
increases, another type of crack-tip structure emerges. The stress field becomes, starting
from 6 = 0° to 180°, a possible QCS, a QCF, a LCF, a LCS, and another LCS. When a
QCS is considered to exist in front of the crack tip, the assembled solution becomes non-
unique. After a close examination of our low-hardening solutions, we find it is obvious that
a,, and ¢, are nearly identical at § = 0°. Note that g,, = 07,5 is a feature of a centered fan
sector. We hence decide that in front of the crack tip a centered fan should appear. This is
a type B field as discussed earlier for power-law hardening materials. We referred to this
type of crack-tip field as a plane-stress type because the structure is similar to the crack-tip
field for Mises materials under plane stress conditions (Hutchinson, 1968b). These two
types of crack-tip structures are schematically shown in Figs 8(a) and 8(b).

The assembly of different sectors requires that 4,4 and o, along the borders of two
different sectors be continuous. A significant feature of a centered fan sector, either a linear
or a quadratic centered fan sector, is that ¢,, has to be continuous along the border with
other plastic sectors. The reason for the continuity of o,, is that P,, = 0 enforces the stress
component g,, to be determined within the centered fan sector as a double root of a
quadratic polynomial equation (Kim and Pan, 1994). The consequence is that we can only
have radial stress discontinuity along the border between two constant stress sectors.

The solutions for singular plastic sectors based on the quadratic part of the modified
Drucker-Prager yield criterion are detailed in Appendix A. The solutions for singular
plastic sectors based on the linear part of the modified Drucker-Prager yield criterion are
the same as those based on the original Drucker—Prager yield criterion. The solutions can
be found in Kim and Pan (1994). Based on the closed-form solutions, the crack-tip fields
are assembled according to Figs 8(a) and 8(b), depending on the corresponding low-
hardening solutions. The normalized crack-tip stress &, (=0,/0,) as functions of & for
perfectly-plastic materials with g = 0.01, 0.4 and 0.8 are presented in Figs 9(a) and 9(b) for
v = 3 and 0.1, respectively. For p = 0, the yield criterion becomes the Mises yield criterion.
Therefore the solution is the Prandil solution, independent of the value of y. Here we plot
the solutions for a small u (=0.01) for completeness. Due to the large value of y = 3, the
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Fig. 8. The schematic plots of different assemblies of singular plastic sectors for crack-tip fields for
perfectly plastic materials.

solution for gy = 0.01 shown in Fig. 9(a) is entirely based on the quadratic part of the yield
criterion. However, as y decreases to 0.1, the solution for ¢ = 0.01 shown in Fig. 9(b) is
determined completely by the linear part of the yield criterion. The perfectly-plastic stress
solutions agree well with our low-hardening solutions. Thus our low-hardening solution
and perfectly plastic solution validate each other. Note that the solution shown in Fig. 9(b)
for =04 and y = 0.1 is a type A field. The solution is the same as that based on the
original Drucker—Prager yield criterion because y (=0.1) is smaller than y,, (=0.1537) as
listed in Table 1. From Figs 9(a) and 9(b), we also find that the stress states ahead of the
crack tip for a given p are apparently different for different values of y. This conclusion is the
same as that for power-law hardening materials. This indicates the necessity to accurately
determine the yield criterion at small values of ¢,/g,,, possibly by analytical or computational
methods in view of the difficulty of experimental methods.
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Provided that the structure of the crack-tip fields remains as that in Fig. 8(b) as y
decreases to 0, the constraint P,, = 0 for the QCF sector leads to the stress state at 8 = 0°
as

94—-2B
Gy = m G- (43)

Substituting eqn (43) into the yield criterion (A9) and considering the symmetry condition
a,; =0atd =0° we arrive at

01, (8 =0 = £ 44)
VB + 1)+ Box
022(0 = 0°) = = 45)
VB + 1)+ Bax
where
3 [94A+4B 3 [94A-2B 94—-2B
=24 <9A+B)’ fr= =y <9A+B> nd K =GB
Examining eqn (43) when y approaches 0, we find that
611/0,,>1 at 6=0° as y-0. (46)

A purely hydrostatic tension should be expected at # = 0° under the assumption that the
solution structure stays as that shown in Fig. 8(b). This conclusion is essentially the same
as that from the finite element computations of Pan and Chen (1991) for hardening materials
based on the original Drucker—Prager yield criterion.

Another parabolic type of yield criterion similar to our modified Drucker-Prager yield
criterion has been used to characterize the yielding behavior of plastics (Raghava et al.,
1973 ; Caddell et al., 1974). This yield criterion has the form of

V(o) = 62 +co,, = ay’ 47

where ¢ and ¢} are two material constants and can be related to the magnitudes of the
uniaxial tensile and compressive yield stresses, ¢, and o, as

c= 3(Gc__o-l)= O-;)z = o-co-!' (48)

Note that the constant 6 is different from the material constant in the modified Drucker—
Prager yield criterion in eqns (3) and (4) with 6,, = ;. Since the parabolic yield criterion
in eqn (47) does not have the same order of power for ¢, and o, the HRR-type solutions
for power-law hardening materials cannot be formulated. One way of developing perfectly
plastic solutions based on the parabolic yield criterion is to perform a finite element analysis
and examine the structures of the crack-tip fields from the computational results. However,
we take the advantage of the fact that the geometric shape of the modified Drucker—Prager
yield criterion with y = 3 in the o,~0, plane is similar to that based on the parabolic yield
criterion. We therefore expect that the structures of the crack-tip fields based on the
parabolic yield criterion are similar to those based on the modified Drucker—Prager yield
criterion with y = 3. From the results for materials based on the modified Drucker—Prager
yield criterion, we expect two types of crack-tip fields based on the parabolic yield criterion.
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Type A is similar to the Prandtl yicld as shown in Fig. 8(a). Type B is similar to the plane-
stress type of crack-tip field as shown in Fig. 8(c). Closed-form solutions for singular plastic
sectors based on the parabolic yield criterion are detailed in Appendix A.

The assembly of the crack-tip fields follows the same procedure for materials based on
the modified Drucker-Prager yield criterion. Figure 10 shows the normalized stresses &
(=0,/0;) as functions of § based on the parabolic yield criterion with the same uniaxial
tensile and compressive yield stresses as those for materials based on the modified Drucker—
Prager yield criterion with g = 0.01, 0.4 and 0.8. For materials corresponding to p = 0.01,
we have a type A structure. For materials corresponding to x = 0.4 and 0.8, we have type
B structures. As shown in Figs 10 and 9(a), the stress solutions based on the modified
Drucker—Prager yield criterion with y = 3 and the parabolic yield criterion are quite differ-
ent, especially the stresses ahead of the crack tip at & = 0°. The stresses ahead of the tip at
# = (° are important parameters for crack initiation and growth. Consequently, the exact
geometry of the yield surface, especially at large ratio of ¢,,/c,, is critical to the analysis of
crack initiation and growth.

For materials based on the modified Drucker—Prager yield criterion, when the pressure
sensitivity becomes large and the quadratic portion of the yield contour increases, Type
B (plane-stress type) crack-tip fields emerge. For Type B crack-tip fields, radial stress
discontinuity occurs along the border between the two constant stress sectors and the sector
bordering the crack face is under plane strain compression in the crack-line direction. For
perfectly plastic materials, the yield criterion at & = 180° follows egn (37) with g, being a
constant. At 0 = 180°, o,, is negative for Type B crack-tip fields. As u approaches \/?ag/Z,
the factor in the curly braces in eqn (37) approaches to zero. Then ¢,, has to approach to
infinity to satisfy the yield criterion. This trend is shown in Figures 9(a) and 9(b). This is
one consequence of the assumption that yielding occurs at all angles around the tip.
However, the computational results of the mixed-mode crack-tip fields for Mises materials
(Dong and Pan, 1990a, 1990b) indicate that when elasticity is considered, the radial stress
discontinuity of fully-yielded crack-tip fields disappears and a finite-stress elastic sector
appears in the neighborhood. Therefore when we include the elastic behaviour in our
perfectly plastic analysis, the radial stress discontinuity and the large negative radial stress
near the crack face should disappear. For materials based on the parabolic yield criterion,
when the pressure sensitivity increases, Type B crack-tip fields also emerge. However, as
the pressure sensitivity increases, the radial stress at 6 = 180° does not have the type of
behavior near u = ./3/2 as specified in eqn (37) for materials based on the modified
Drucker—Prager yield criterion.

6. CONCLUSION

We have proposed a modified Drucker—Prager yield criterion which consists of a linear
function and a quadratic function of the tensile effective stress and the mean stress in order
to understand the effects of the vertex on the yield surface based on the original Drucker-
Prager yield criterion. We find that the HRR-type asymptotic crack-tip fields can be found
based on the modified Drucker—Prager yield criterion whereas the solution procedure
breaks down on the original Drucker—Prager yield criterion. We also present the crack-tip
fields for perfectly plastic materials based on the modified Drucker—Prager yield criterion
and a parabolic type of yield criterion. The asymptotic crack-tip solutions for both power-
law hardening and perfectly-plastic materials suggest that the crack-tip stress distribution
depends on the detailed geometric shape of the yield surface near the state of purely
hydrostatic tension. More research is needed to shed light on the yield behavior at large
mean stresses for pressure-sensitive materials in order to understand fracture of these
materials.
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APPENDIX A: SINGULAR PLASTIC SECTOR SOLUTIONS

In this appendix, we present the solutions of singular plastic sectors for perfectly plastic materials based on
the quadratic and parabolic types of yield criteria.

A.). Quadratic yield criterion
First we examine the solutions based on the quadratic part of the modified Drucker~Prager yield criterion.
The yield criterion is defined as

‘/’(Uij) =(Aa; +B°'r2n)”2 =09 (A1)

where g, is a material constant, and 4 and B are defined in eqn (5). The components of the outward normal to
the yield surface are

o 1 2
P,= 30, = 30 (34s,+:Bo,, 8,). (A2)
Further, the condition P;; = 0 leads to
9428
033 =m(611+022)s (A3)

which is exactly the same as eqn (18) for hardening materials.
(1) Quadratic centered fan sector. The condition P, = 0 for centered fan sector leads to

9428 94-28

O-rrzm(o.ll+022) =m(0n+6aa)» (A4)

Combining eqns (A4) and (A3) and solving for a,, from (A4), we get

_94-2B

2 =5 1B’ (A5)

G, =0

Substituting the above relation into the equilibrium eqns in (38) and (39), we derive the solutions for centered fan
sectors as

94+ 4B
000 = oy cos(k(@—00)) — | =52 ol sin(k(@ - 0,)) (A6)
_ 3B sin(k(f — 0,)) + % cos(k (6 —8,)) (A7)
Gy = 9A+4BO-% m 0 g, COS 0
94—2B
R Y PWYAL. (A8)

where k = \/12B/(94+4B), 0, is a reference angle, and ¢, and ¢, are the stress components at 6 = 6.

(2) Quadratic constant stress sector. From eqn (16} with g, = g, the yield criterion based on the quadratic
yield criterion under plane strain conditions can be written as
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3 94+4B\ , 2 3 94—2B 2 12
[4A<9A+B)(0'rr+0'99)“2'4(9A+B>0'rr0'oe+3AUre =0y. (A9)

The stresses should satisfy the above yield criterion.

A.2. Parabolic yield criterion
Here we examine the solutions based on the parabolic yield criterion. The parabolic yield criterion is

Y(oy) = 6l +co,, = 64° (A10)

where ¢ and o are two matenal constants which can be expressed in terms of the uniaxial tensile and compressive
yield stresses, ¢, and o, as

¢c=3(o.,—0,), 0y3°=o0.a0, (AlD)
The components of the outward normal to the yield surface are

F
P, = Wyt (6~a) 3, (A12)
00 ;

The condition P;; = 0 gives

G, +0gg 0.0,

o == 5 (A13)
(1) Parabolic centered fan sector. The condition P, = 0 leads to
o, =3%'ﬂ—%ﬁ. (A14)
Combining eqns (A13) and (A14) gives
o, = 033. (A15)
Combining eqns (A15) and (A13) gives
O, —0p = ~(0.—0,). (Al6)
The equilibrium condition and eqn (A16) give us
a—;éqzo'cu—a,. (A17)
Now we can derive the solutions for centered fan sectors as
Gy = 0%+ (0, —0)(0—8,) (A18)
g, = 33(‘;—__3;";& - %(ac —a,) (A19)
6,06,—306% 1
Ogg = m + Z(a( —a,) (A20)
633 =0, (A21)

where a% and 8, are constants.
(2) Parabolic constant stress sector. The stresses in the constant stress sector have to satisfy the yield criterion

3 c Y
How—ow +305+ 2 (6 10y = 5.0, (A2)



